BIBLIOGRAPHY

Astumian, R. D., Hanggi, P. (2002) Brownian motors, Physics Today, 55(11): 33-39.

Badjic, J. D., Balzani, V., Credi, A., Silvi, S. and Stoddart, J. F. (2004) A molecular elevator, Science, 303, 1845-1849.

Ballardini, R., Balzani, V., Credi, A., Gandolfi, M. T. and Venturi, M. (2001) Artificial molecular-level machines: which energy to make them work?, Accounts of Chemical Research, 34: 445-455.

Balzani, V., Credi, A., Raymo, F. M. and Stoddart J. F. (2000) Artificial molecular machines, Angewandte Chemie International Edition, 39: 3348-3391.

Balzani, V., Clemente-León, M., Credi, A., Ferrer, B., Venturi, M., Flood, A. H. and Stoddart, J. F. (2006) Autonomous artificial nanomotor powered by sunlight, Proceedings of the National Academy of Sciences of the U.S.A., 103: 1178-1183.

Balzani, V., Credi, A. and Venturi, M. (2008) Molecular devices and machines: concepts and perspectives for the nanoworld, Weinheim: Wiley-VCH.

Balzani, V. and Venturi, M. (2014) Chemistry. Reading and writing the book of nature, Cambridge: The Royal Society of Chemistry. Original edition in Italian: Balzani, V., Venturi, M. (2012) Chimica! Leggere e scrivere il libro della natura, Trieste: Scienza Express.

Bissell, R. A., Córdova, E., Kaifer, A. E. and Stoddart, J. F. (1994) A chemically and
electrochemically switchable molecular shuttle, Nature, 369: 133-137.

Browne, W. R. and Feringa, B. L. (2006) Making molecular machines work, Nature
Nanotechnology
, 1: 25-35.

Bruns, C. J. and Stoddart, J. F. (2017) The nature of the mechanical bond: from
molecules to machines
, Hoboken: Wiley.

Cheng, C., McGonigal, P. R., Schneebeli, S. T., Li, H., Vermeulen, N. A., Ke, C. and Stoddart, J. F. (2015) An artificial molecular pump, Nature Nanotechnology, 10: 547-553.

Crichton, M. (2002) Prey, New York: HarperCollins.

Drexler, K. E. (1986) Engines of creation: the coming era of nanotechnology, New
York: Anchor books.

Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T., Nussbaumer, A. L. (2015) Artificial molecular machines, Chemical Reviews, 115: 10081-10206.

Feynman, R. P. (1960) There’s plenty of room at the bottom, Engineering and Science, 23: 22-36.

Goodsell, D. S. (2009) The machinery of life, New York: Springer.

Goujon, A., Lang, T., Mariani, G., Moulin, E., Fuks, G., Raya, J., Buhler, E. and Giuseppone, N. (2017) Bistable [c2] daisy chain rotaxanes as reversible muscle-like actuators in mechanically active gels, Journal of the American Chemical Society, 139: 14825-14828.

Green, J. E., Choi, J. W., Boukai, A., Bunimovich, Y., Johnston-Halperin, E., DeIonno, E., Luo, Y., Sheriff, B. A., Xu, K., Shin, Y. S., Tseng, H.-R., Stoddart, J. F. and Heath, J. R. (2007) A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre, Nature, 445: 414-417.

Hernandez, J. V., Kay, E. R. and Leigh, D. A. (2004) A reversible synthetic rotary molecular motor, Science, 306: 1532-1537.

Jiménez, M. C., Dietrich-Buchecker, C. and Sauvage, J.-P. (2000) Towards synthetic molecular muscles: contraction and stretching of a linear rotaxane dimer, Angewandte Chemie International Edition, 39: 3284-3287.

Jones, R. A. L. (2004) Soft machines: nanotechnology and life, Oxford: Oxford University Press.

Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N. and Feringa, B. L. (1999) Light-driven monodirectional molecular rotor, Nature, 401: 152-155.

Kudernac, T., Ruangsupapichat, N., Parschau, M., Maciá, B., Katsonis, N., Harutyunyan, S. R., Ernst, K.-H. and Feringa, B. L. (2011) Electrically driven directional motion of a four-wheeled molecule on a metal surface, Nature, 479: 211-212.

Lehn, J.-M. (1995) Supramolecular chemistry: concepts and perspectives, Weinheim: Wiley-VCH.

Levi, P. (1966) The sixth day and other tales, New York: Summit Books. Original edition in Italian: Levi, P. (1966) Storie naturali, Torino: Einaudi.

Levi, P. (1995) The monkey’s wrench, New York: Penguin Books. Original edition in Italian: Levi, P. (1978) La chiave a stella, Torino: Einaudi.

Lewandowski, B., De Bo, G., Ward, J. W., Papmeyer, M., Kuschel, S., Aldegunde, M. J., Gramlich, P. M. E., Heckmann, D., Goldup, S. M., D’Souza, D. M., Fernandes, A. E. and Leigh, D. A. (2013) Sequence-specific peptide synthesis by an artificial small-molecule machine, Science, 339: 189-193.

Li, Q., Fuks, G., Moulin, E., Maaloum, M., Rawiso, M., Kulic, I., Foy, J. T. and Giuseppone, N. (2015) Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors, Nature Nanotechnology, 10: 161-165.

Livoreil, A., Dietrich-Buchecker, C.O. and Sauvage, J.-P. (1994) Electrochemically triggered swinging of a [2]-catenate, Journal of the American Chemical Society, 116: 9399-9400.

Priestley, J. (1781) Experiments and observations relating to various branches of natural philosophy, vol. 2, Birmingham: Pearson and Rollason, for J. Johnson (London).

Ragazzon, G., Baroncini, M., Silvi, S., Venturi, M. and Credi, A. (2015) Light-powered autonomous and directional molecular motion of a dissipative self-assembling system, Nature Nanotechnology, 10: 70-75.

Ramström, O. (2016) Scientific background on the Nobel Prize in Chemistry 2016 – Advanced information, Stockholm: The Royal Swedish Academy of Sciences. Available at: https://www.nobelprize.org/uploads/2018/06/advanced-chemistryprize2016.pdf.

Richter, J.-P. and Pedretti, C. (1977) The literary works of Leonardo da Vinci, Oxford: Phaidon.

Sauvage, J.-P. and Dietrich-Buchecker, C., eds. (1999) Molecular catenanes, rotaxanes and knots, Weinheim: Wiley-VCH.

Schliwa, M., ed. (2003) Molecular motors, Weinheim: Wiley-VCH.

Soong, R. K., Bachand, G. D., Neves, H. P., Olkhovets, A. G., Craighead, H. G. and Montemagno, C. D. (2000) Powering an inorganic nanodevice with a biomolecular motor, Science, 290: 1555-1558.

Thubagere, A. J., Li, W., Johnson, R. F., Chen, Z. B., Doroudi, S., Lee, Y. L., Izatt, G., Wittman, S., Srinivas, N., Woods, D., Winfree, E. and Qian, L. L. (2017) A cargo-sorting DNA robot, Science, 357: eaan6558.

Wilson, M. R., Solà, J., Carlone, A., Goldup, S. M., Lebrasseur, N. and Leigh, D. A. (2016) An autonomous chemically fuelled small-molecule motor, Nature, 534: 235-240.